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Abstract
The purpose of this paper is to show the advantages that represent the use of
numerical methods that preserve invariant quantities in the study of solitary
wave interactions for the regularized long wave equation. It is shown that the
so-called conservative methods are more appropriate to study the phenomenon
and provide a dynamic point of view that allows us to estimate the changes in
the parameters of the solitary waves after the collision.

PACS numbers: 02.60.C, 47.11, 52.35.M

1. Introduction

The interaction of solitary waves was first studied in connection with the Korteweg–de Vries
equation (KdV) (see [1]),

ut + ux + (u2)x + uxxx = 0 −∞ < x < ∞ t > 0 (1)

that was originally derived as a model for the unidirectional propagation of water waves of
small amplitude and long wavelength. Equation (1) admits a family of solutions that are
solitary waves, and the numerical studies of Zabusky and Kruskal [2] indicated that the result
of a nonlinear interaction of a pair of solitary waves leaves them unaltered except for a phase
shift. The proof of this soliton property for the KdV was obtained by using the inverse-
scattering method [3], a technique that can be applied to partial differential equations that, as
KdV, possess an infinite number of conserved quantities. The inverse-scattering method can
be viewed in the light of the generalization, to infinite dimension, of the theory of integrable
Hamiltonian systems of ordinary differential equations [4].

An alternative model to equation (1) is the regularized long wave equation (RLW),

ut + ux + (u2)x − uxxt = 0 −∞ < x < ∞ t > 0 (2)

initially suggested by Peregrine [5], with physical and computational advantages with respect
to (1) (see [6]) and widely studied by Benjamin, Bona and Mahoney [7]. In fact, (2) is also
known as the BBM equation. It has solitary wave solutions, similar to those for (1). But, as
far as the interaction is concerned, equation (2) presents some remarkable differences. First
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numerical experiments [6] suggested that the interaction is ‘inelastic’: after this, the waves
emerge not only with a phase shift, but also with a change in their amplitudes. Besides that,
the formation of a small ‘rarefaction’ wave of dispersive nature behind the smaller wave is
also observed. The numerical evidence of these differences with respect to the interaction
in (1) gave rise to an analytical study of the phenomenon. Olver [8] showed that (2) is not
integrable in the sense that it only has a finite number of conserved quantities, which prevents
the use of the inverse-scattering technique. On the other hand, in [9], Bona showed that, in
physical situations in which the waves are of small amplitude, both (1) and (2) can be used to
describe the model, in the sense that the solutions of KdV and RLW equations remain close
for times that are not too large. However, the bound of the difference grows with time and the
soliton property for (1) may not be a small-amplitude phenomenon. This does not make this
result applicable to the study of the interaction of solitary waves for (2). In a similar way, in
[10] a different version of the RLW equation (2) was considered as a perturbation of (1). The
author used perturbation techniques to obtain an approximation to the solution of the RLW
equation from the solution given by the KdV equation, generalizing the perturbation methods
for Hamiltonian systems of ordinary differential equations that are approximately integrable
[4]. This allowed us to verify that there exists a change in the velocities of the two solitary
waves after interaction, for the case considered.

But, in general, solutions of (2) can only be obtained by using numerical simulation
[11–14]. These numerical studies, specially [11, 14], focused exclusively on highly accurate
numerical methods. We think that accuracy is an important criterion, but it is not the only one;
that is, not only the size of the errors matters, but also the direction in which they propagate in
time. A good behaviour of the errors is determined by the fact that the numerical integrator used
retains qualitative properties of the system of differential equations under consideration [15].
A choice of the numerical method exclusively based on accuracy may provide approximations
whose qualitative behaviour is incorrect in relation to the phenomenon being described.

The use of qualitative aspects of the numerical schemes has revealed special interest in
the integration of solitary waves. More specifically, for equation (2), the importance of taking
into account the conserved quantities of the equation was established in [16]. One of the main
conclusions is that the numerical solution of methods that preserve some of these invariants
behaves as a solitary wave that basically retains the amplitude of the original one, with a
phase shift that grows linearly in time with respect to the original phase. However, in the case
of ‘nonconservative’ methods, the numerical approximation shows an amplitude error which
grows with time and a quadratic perturbation in the phase. This behaviour justifies the great
interest in numerical methods with conservation properties in order to study the interaction of
solitary wave solutions of (2).

The paper is structured as follows. In section 2 we describe the different behaviour of
numerical approximations to solitary wave solutions of the RLW equation in connection with
conservation properties. Section 3 is devoted to justifying the use of conservative methods
for the solitary wave interaction problem. There are two main reasons for this selection: the
first one is that numerical approximations obtained with conservative integrators show a better
qualitative behaviour before the interaction in order to simulate the collision properly. On the
other hand, the use of this kind of methods provides a dynamic point of view that allows us to
estimate the parameters of the solitary waves emerging from the interaction.

2. Solitary waves for the RLW equation and numerical methods

First we describe some properties of the RLW equation that will be used in our study.
Equation (2) admits only three independent quantities conserved by the solutions, namely [8]
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that are usually called ‘mass’ , ‘momentum’ and ‘energy’, respectively.
A second property is that (2) possesses a two-parameter family of solitary wave solutions

of the form

ψ(x, t, c, x0) = A sech2(K(x − ct − x0))
(6)

A = 3

2
(c − 1) K = 1

2

(
1 − 1

c

)1/2

.

The parameter c > 1 determines not only the velocity of the wave but also its amplitude A,
with the taller the wave the faster the travel. On the other hand, x0 governs the initial location
of the solitary wave.

The influence of the invariants (3)–(5) in the numerical integration of solitary waves (6)
was analysed in [16]. The study was done with semidiscrete (discrete t and continuous x)
approximations obtained by one-step integrators with fixed step size for the initial value
problem for (2) of the form

Un+1 = φ�t (U
n). (7)

Here �t denotes the time step, Un = Un(x) is a numerical solution at time level
tn = n�t, n = 0, 1, . . . , and φ�t is a mapping that approximates the flow of the equation.
Thus, if U 0 = u0, then Un represents an approximation to the value u(tn) of the solution u of
(2) with initial condition u0.

The analysis of the asymptotic expansion of the approximation to a solitary wave (6) states
that, under not restrictive hypotheses about (7), if U 0 = ψ(x, 0, c, x0), then the numerical
solution Un(x) can be written as (see [16, 17])

Un(x) = ψ(x, tn, c̃, x̃0) + (�t)rρ(x, tn) + (�t)rQ(x, tn,�t) (8)

where

c̃ = c + α2tn(�t)r (9)

x̃0 = x0 +

(
α1tn + α2

t2
n

2

)
(�t)r (10)

for some constants α1, α2 and where r is the order of the method (7). Now we make some
comments on formula (8).

(i) The first term on the right-hand side of (8) is a solitary wave of the form (6) but with new
parameters satisfying equations (9)–(10). We observe that the velocity c̃ of this modified
wave (resp. amplitude) is a linear-in-time perturbation of the velocity c of the original
wave (resp. amplitude). On the other hand, x̃0 differs from the original x0 in terms
that grow quadratically with time, and so does the phase of the modified wave, x̃0 + c̃tn
with respect to the original x0 + ctn. An important fact to point out (see [16]) is that if
the numerical method (7) preserves the quantity (4) or the energy (5), then α2 = 0 in
(9)–(10). Therefore, the modified wave maintains the original velocity (and consequently
the amplitude) while the phase only differs from the original one in terms that grow
linearly with time.
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(ii) The second term (�t)rρ on the right-hand side of (8) represents errors of leading order
O((�t)r) not associated with changes in the parameters of the wave. In general, this
term may grow at most linearly with time, but in the case where the numerical method
conserves the quantity (3) and one of the other two (4) or (5), it remains bounded [16].

(iii) Finally, the third term in (8), (�t)rQ, is a remainder of higher order o((�t)r) for fixed t.
Although this term may grow with time, it is numerically controlled for reasonably long
times (see also [17]).

Therefore, formula (8) says that the modified solitary wave is a good guide for the
numerical solution and determines its behaviour. Consequently, it can be understood that the
numerical approximation to a solitary wave of the family (6) given by a method that conserves
(4) or (5) (the conservation of (3) is satisfied by practically all standard numerical methods
since it is a linear functional [18]) maintains basically a solitary wave profile. Furthermore, it
behaves essentially as a wave with a phase shift with respect to the original, but with similar
amplitude. This provides a simulation of the solitary wave more appropriate, in a qualitative
sense, than that of a general numerical scheme. In this last case, the numerical solution looks
like a wave whose amplitude (velocity) separates from the theoretical one linearly with time
and whose phase grows quadratically.

3. Numerical simulation

The aim of this section is to disclose the influence of the conservative character of the numerical
integrators in the simulation of the solitary wave interaction phenomenon. We focus on two
issues of the problem: the evolution of the solitary waves before the interaction and the
estimation of the parameters of the solitary waves emerging after collision.

The following standard methods, just considered in [16] for the analysis of one solitary
wave integration, are used for this numerical study:

(i) The well-known implicit midpoint rule, a second-order method that preserves the quantity
I but not the Hamiltonian H (see [19]), is taken as an example of conservative scheme.

(ii) The nonconservative method selected is the simply diagonally implicit Runge–Kutta
method with tableau

γ 0
1 − 2γ γ

1/2 1/2

where γ = (3 +
√

3)/6. This is a third-order method which does not preserve the quantity
I nor the Hamiltonian H.

The choice of these methods is mainly determined by their behaviour in long time
integrations in connection with their conservation properties. We do not pretend to establish a
comparison between the efficiency of the schemes. On the other hand, both methods preserve
the first invariant C. We have preferred to use competitive schemes instead of constructing
mass nonpreserving integrators. Furthermore, as we pointed out in the previous section, the
more important differences in the behaviour of the approximations are stated in relation to the
other two conserved quantities I and H. Finally, a method preserving the Hamiltonian H and
not the invariant I could have been chosen as an example of conservative integrator, instead of
the implicit midpoint rule (as in [16]).

To implement in practice these semidiscrete schemes we first discretize the spatial variable
using a Fourier pseudospectral approximation, so that errors virtually correspond to the time
integrators [20]. To this end, we consider a spatial interval 0 � x � L with periodic boundary
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Figure 1. Evolution of the error in the simulation of a single solitary wave: (a) shows the evolution
of the error in the amplitude, (b) shows the evolution of the error in the phase. Solid line (——)

corresponds to the conservative method and dashed line (- - - -) to the nonconservative method.

conditions. This interval is chosen sufficiently large to assure that initially the solution is
properly represented inside it, in the sense that the value of the solution outside this interval
can be rejected due to the zero exponential decay of the solitary waves of the family (6).
We achieve a practically exact spatial discretization by successively doubling the number of
spatial grid points until a grid was found for which no further error reduction was possible.
The use of pseudospectral approximation in spatial discretization is justified by its exponential
convergence. Having in mind that we are interested in conservation properties along time
integration, other discretizations are also valid while error in space is negligible with respect
to error in time.

3.1. Solitary wave evolution

We begin our study by simulating the evolution of a single solitary wave. These experiments
illustrate the different behaviour of the numerical methods with respect to the evolution of the
numerical profile parameters. This will be used later, when considering the evolution of two
waves.

In the first experiment we take a solitary wave of the family (6) with velocity c = 5
(then the amplitude is A = 6) and initially located at x0 = 256. We integrate the equation
by taking as initial condition the restriction of this wave to the spatial grid. We use the same
step size, �t = 10−3, for both methods. The output obtained in each case consists of the
grid values of the numerical solution, so we can compute the amplitude of the corresponding
numerical solitary wave and the point when this maximum value is attained (the phase) from
the corresponding interpolating trigonometric polynomial.

Figure 1 presents, in logarithmic scale, the evolution in time of the error in the parameters
(amplitude and phase) of the numerical solution for both methods. Solid line corresponds
to the results obtained with the conservative scheme and dashed line is associated with the
nonconservative one.

Figure 1(a) shows the evolution of the error in the amplitude. Note that in the conservative
case this error remains constant but in the nonconservative case the error growth is linear.
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Figure 2. Tail behind the numerical profile obtained with the nonconservative method. The vertical
scale is magnified.

Figure 1(b) refers to the evolution of the phase error. In both cases, there is a phase shift
that grows with time, but, as the slopes of the lines show, the numerical profile obtained with
the conservative method separates from the original wave linearly, being quadratically in the
nonconservative case.

The same error behaviour can be observed when different step sizes �t are used, and
when different solitary wave velocities are considered.

Finally, the change in amplitude observed in the nonconservative scheme gives rise to
another harmful phenomenon related to the first conserved quantity C. We have already
noted that this invariant, which represents the area enclosed by the wave, is preserved by
the numerical solution given by each integrator. In the case of the nonconservative method
selected, the approximation decreases in amplitude with respect to the original one. Thus,
the mass lost is recovered through the formation of a tail behind the numerical profile that
disfigures the wave form. This tail can be observed in figure 2, which displays the numerical
solution in a magnified vertical scale. This phenomenon does not occur in the conservative
case.

These results confirm the theoretical analysis stated in [16] and discussed in section 2.
In spite of the nonlinearity of the equation, two solitary waves which do not interact are

virtually the sum of two single waves due to the exponential decay of both waves. We
have confirmed numerically this point by considering as initial data for the numerical
simulation the superposition of two solitary waves. We conclude that the parameters for
each solitary wave are just the same, up to the precision being used, as the values computed
when each solitary wave is simulated separately. This implies that, when the conservative
method is used, each profile shows constant-in-time amplitude and its phase evolves linearly.
In the case of the nonconservative scheme, the amplitude decreases with time linearly and the
phase evolution is quadratic.

As a first consequence, in the numerical simulation of the solitary wave interaction, the
initial location of the waves is crucial when a nonconservative method is used. This is due to
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Table 1. Comparison between the numerical parameters and the theoretical ones in the case of a
single solitary wave with A = 6, x0 = 256, c = 5.

�t A�t |A − A�t | x0�t |x0 − x0�t | c�t |c − c�t |
8 × 10−3 5.999 806 1.9 × 10−4 255.999 884 1.2 × 10−4 4.999 657 3.4 × 10−4

4 × 10−3 5.999 951 4.9 × 10−5 255.999 971 2.9 × 10−5 4.999 914 8.6 × 10−5

2 × 10−3 5.999 988 1.2 × 10−5 255.999 993 7.2 × 10−6 4.999 979 2.1 × 10−5

1 × 10−3 5.999 997 3.1 × 10−6 255.999 998 1.8 × 10−6 4.999 995 5.4 × 10−6

the modification of the parameters explained above, specially in the amplitude. If the solitary
waves are initially too separated, when they are about to collide, their numerical counterparts
would not give a reliable representation of the interaction. This would explain that in the
numerical simulations carried out in the literature with this kind of methods, the waves are
initially placed sufficiently close [11, 14]. But this is not the case of a conservative method
because the evolution in time of the numerical solitary waves does not damage their amplitudes.
Therefore the numerical waves remain undisturbed from the beginning, independently of their
initial location, and so they represent the interaction accurately . The main wrongness is the
collision time, due to the phase shift that both waves suffer.

3.2. Solitary wave interaction

We have shown the importance of using conservative methods in order to simulate solitary
waves properly. However, the more appropriate behaviour of conservative integrators also
gives a dynamic point of view that allows us to estimate the parameters of the solitary waves
from their numerical counterparts. This will be of special interest in the simulation of solitary
wave interaction after the collision.

The numerical studies performed in the literature [6, 11, 14] show that, after the collision
of two solitary wave solutions of (2), two new profiles appear. But the amplitude and phase
of these emergent waves are different from those of the original. Furthermore, a small tail
wave of dispersive nature behind the slower solitary wave is also noted. All these properties
are observed in our numerical experiments, but our objective is to show how to estimate the
parameters of the new solitary waves after interaction by using conservative methods.

As we have seen, the numerical approximation of a solitary wave obtained with a
conservative method maintains a wave profile with practically constant amplitude, and phase
that evolves linearly with time (see figure 1). Thus, we assign to this numerical wave a
numerical amplitude A�t determined by fitting the amplitudes of the numerical solution
computed at different time levels. On the other hand, the linear evolution in time of the
numerical phase allows us to fit a line to the corresponding results computed at the same
output times. Thus, we obtain a numerical initial location x0�t , and a numerical velocity
c�t of the numerical wave. The parameters A�t, x0�t and c�t computed in this way are
approximations to the theoretical ones A, x0 and c, respectively.

To illustrate this convergence, in table 1 we present these numerical parameters computed,
with the conservative method, for the simulation of a single solitary wave with c = 5 (A = 6)

and x0 = 256 and by fitting the output obtained at t = 25, 50, 75, . . . , 300. Note that the
error columns in the table show a second-order convergence of the numerical parameters to
the theoretical ones. This is the order of the numerical method. Similar results are obtained
for simulations of solitary waves with other parameters and, taken into account the remarks in
subsection 3.1, we get the same numerical parameters when the simulation includes another
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Figure 3. Perspective plot of the collision of two solitary waves with a conservative method.
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Figure 4. Dispersive tail appearing after the collision of two solitary waves.

solitary wave but without the interaction. This behaviour allows us to estimate the parameters
of the theoretical solitary wave being studied.

As an application of this numerical procedure, we can consider an experiment of wave
interaction. We take the superposition of two solitary waves as initial data. The parameters
are c(1) = 5 (A(1) = 6), x

(1)
0 = 256 for the first wave, and c(2) = 3.4 (A(2) = 3.6), x

(2)
0 = 576

for the second one.
Figure 3 shows a perspective plot of the collision of the two solitary waves. As in

other works, we observe that, two new numerical solitary waves emerge from the interaction.
Besides that, a more careful look (see figure 4, which displays the numerical solution after the
collision in a magnified vertical scale) shows the formation of a tail. We have checked that the
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Table 2. Numerical parameters of the faster solitary wave evolved in the interaction. Initially
A(1) = 6, x

(1)
0 = 256, c(1) = 5.

A
(1)
�t x0

(1)
�t c

(1)
�t

�t Before After Before After Before After

8 × 10−3 5.999 806 5.999 917 255.999 884 259.958 953 4.999 657 4.999 732
4 × 10−3 5.999 951 6.000 063 255.999 971 259.958 720 4.999 914 4.999 989
2 × 10−3 5.999 988 6.000 099 255.999 993 259.958 661 4.999 979 5.000 053
1 × 10−3 5.999 997 6.000 109 255.999 998 259.958 647 4.999 995 5.000 069

Table 3. Numerical parameters of the slower solitary wave evolved in the interaction. Initially
A(2) = 3.6, x

(2)
0 = 576, c(2) = 3.4.

A
(2)
�t x0

(2)
�t c

(2)
�t

�t Before After Before After Before After

8 × 10−3 3.599 943 3.599 643 575.999 942 571.480 233 3.399 910 3.399 710
4 × 10−3 3.599 986 3.599 686 575.999 985 571.480 530 3.399 977 3.399 778
2 × 10−3 3.599 996 3.599 697 575.999 996 571.480 604 3.399 994 3.399 795
1 × 10−3 3.599 999 3.599 700 575.999 999 571.480 622 3.399 999 3.399 799

number of oscillations of this tail increases with time and its maximum amplitude decreases,
suggesting a dispersive nature.

As previous works indicate, the parameters of both solitary waves change due to the
collision, although this is undistinguishable in figure 3. We can estimate this change as follows:
from the evolution of these profiles we calculate their numerical parameters A

(i)
�t , x0

(i)
�t and

c
(i)
�t , i = 1, 2, by using the technique described above. In tables 2 and 3 we present these

parameters computed for both numerical waves before and after the interaction. By using the
numerical parameters x0

(i)
�t and c

(i)
�t , i = 1, 2, we can compute the numerical phase of each

solitary wave in any established time.
First of all, note that from table 2, the faster wave increases its amplitude/velocity, while

in table 3 we observe a decrease in amplitude of the slower wave. This behaviour coincides
with that of previous works. Furthermore, there is a phase shift in the waves, as the variation
in the parameters x0

(1)
�t , x0

(2)
�t suggests.

Now, taking into account the second-order convergence of the numerical parameters,
we use extrapolation with the results corresponding to the step sizes 2 × 10−3 and 10−3.
Thus, we can estimate that the faster wave resulting from the interaction has velocity
c(1) = 5.000 074 (A(1) = 6.000 111) and would be initially placed at x

(1)
0 = 259.958 642 if it

was alone. For the slower one, c(2) = 3.399 800 (A(2) = 3.599 701) and x
(2)
0 = 571.480 628.

Hence, the faster solitary wave increases its velocity in 7.4 × 10−5 (and its amplitude
in 1.1 × 10−4), but the slower one decreases its velocity in 2.0 × 10−4 (and its amplitude
in 3.0 × 10−4).

As a conclusion, the experiments performed in this paper reveal that the use of conservative
methods shows great advantages in the evolution of solitary wave simulations for the RLW
equation. This is particularly important in the study of the interaction phenomenon, where
no analytical solution is available. This kind of methods would provide an appropriate
starting point in the numerical analysis of other more complicated equations with solitary
wave solutions and conserved quantities.
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